ANALYSIS OF EPUSKESMAS ADOPTION IN TASIKMALAYA REGENCY USING UTAUT MODEL

Fauzia Ramadhani, Siska Noviaristanti
Faculty of Economics and Business, Telkom University, Indonesia
E-mail: fauziaramadhani230196@gmail.com, siskamarhen@telkomuniversity.ac.id

ABSTRAK
The 4.0 Revolution has rendered information technology an indispensable necessity in human life. Technological progress, particularly in healthcare, offers significant conveniences. The healthcare sector's technological evolution is marked by the digital transformation of Community Health Center (Puskesmas) information systems, with ePuskesmas becoming one such system. ePuskesmas serves as an online and integrated Puskesmas information system following the standards set by the Ministry of Health of the Republic of Indonesia through the Puskesmas Information System (SIP). Despite not being universally implemented, particularly in Tasikmalaya District, this study uses the UTAUT model. Variables include Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Behavioral Intention, and Use Behavior. This study uses a quantitative method by distributing online questionnaires to ePuskesmas users in 40 Puskesmas in Tasikmalaya District. All collected data met validity and reliability criteria and were assessed using SmartPLS 4.0 software. Hypotheses were tested using Partial Least Square Structural Equation Modeling (PLS-SEM), revealing that Performance Expectancy and Effort Expectancy significantly and positively influence Behavioral Intention. Behavioral Intention and Facilitating Conditions significantly and positively impact the Use Behavior of ePuskesmas.

Kata Kunci: Digital transformation, technology acceptance, ePuskesmas, UTAUT

INTRODUCTION
Revolution 4.0 has made advances in information technology in various areas of life. Advances in information technology can provide many conveniences in life, one of which is in the health sector. In the health sector, information technology is used starting from health planning to providing various health data for individual and community levels (health digital transformation strategy blueprint 2024, 2021). However, based on the 2024 health digital transformation strategy blueprint document, there are still several main problems in health services, namely:

1. It is difficult for health workers to access health data easily, continuously, and in real time.
2. The completeness, consistency, and accuracy of health data to meet the need for evidence-based policy formulation has yet to be achieved.
3. The absence of standardization and integration of health data has created difficulties in realizing health data interoperability within the continuum of care principle.
4. Data recording could be more effective and efficient.

Technological transformation must be carried out in health services to overcome those problems. Health technology transformation integrates and develops health data (Digital Transformation Strategy Blueprint 2024, 2021). Based on the Regulation of the Minister of Health of the Republic of Indonesia No. 21 of 2020 concerning the Ministry of Health's Strategic Plan
for 2020-2024, it requires efforts to change health development governance, including integrating information systems, research, and health development.

Meanwhile, according to the Regulation of the Minister of Health of the Republic of Indonesia Number 31 of 2019, every Puskesmas must organize a Puskesmas information system. EPuskesmas is one of the Puskesmas information systems to assist Puskesmas services and management online and integrated using the Puskesmas information system (SIP) standards of the Ministry of Health of the Republic of Indonesia (epuskesmas. id, 2016).

According to the Regulation of the Minister of Health of the Republic of Indonesia Number 24 of 2022, which states that recording and documenting clinical information must be complete, clear, and carried out after the patient has received health services, the target in implementing ePuskesmas is complete patient data entered into ePuskesmas so that it can be used for decision making.

Based on the results of an interview with the Intermediate Expert Epidemiologist Functional Supervisor in the Health Data and Information Section of the Tasikmalaya District Health Service, namely Mr. Basuki Kartono, SKM, MKM, which was conducted on Tuesday, June 6th, 2023, information was obtained that ePuskesmas has been integrated with several health applications others, one of which is BPJS p-care. EPuskesmas allows all patient data, both BPJS and non-BPJS patients, to be monitored in one system. With complete monitoring, especially for BPJS patients, the Puskesmas concerned will receive capitation funds, which can be used for employee bonuses or additional costs for Puskesmas operations. However, Community Health Centers in Tasikmalaya Regency still have not implemented ePuskesmas properly, and there are still several Community Health Centers that have not yet 100% input patient data into ePuskesmas in their operations. Based on the Community Health Center performance report from ePuskesmas, the following data was obtained:

![Average Implementation of ePuskesmas in Kab. Tasikmalaya January-May 2023](image)

**Figure 1.** Average Implementation of ePuskesmas in Kab. Tasikmalaya January-May 2023

Based on Figure 1, several Community Health Centers have not input patient data into ePuskesmas 100%. There are 8 Community Health Centers that implement ePuskesmas below 50% and 32 Community Health Centers that implement ePuskesmas above 50%. For the successful implementation of ePuskesmas, it is necessary to analyze ePuskesmas acceptance.

Unified Theory of Acceptance and Use of Technology (UTAUT) is a technology acceptance model developed by Venkatesh et al. (2003) and is the most comprehensive model to explain technology acceptance, which reflects the user's perception of technology. The UTAUT model has been consistently proven to explain a large amount of variation in technology use and acceptance behavior in various contexts, such as communication technology, online education, and health informatics (Shahbaz et al., 2021).

UTAUT believes that Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions are direct determinants of Behavior Intention and Use Behavior. Previous research has investigated the use of technology using the UTAUT approach, such as augmented reality in education (Faqih & Jaradat, 2021), health devices (Wang et al., 2020), human resource
information systems (Alkhwaldi et al., 2022), medical teleconsultation (Baudier et al., 2023), mobile banking (Rachmawati et al., 2020), e-learning (Lantu et al., 2023); (Al-mamary, 2022), and environmental air pollution management system (Shahbaz et al., 2021). However, these studies have different results regarding the factors influencing behavioral intention and use behavior. For this reason, this research aims to analyze the factors influencing the adoption of ePuskesmas at District Health Centers. Tasikmalaya integrates the Unified Theory of Acceptance and Use of Technology (UTAUT) model.

METHODS AND RESEARCH

This research uses quantitative methods and primary data. Data was collected by distributing questionnaires online via a Google Form link to respondents consisting of Heads of Community Health Centers, Heads of Administration, ePuskesmas officers, and SP3 officers at 40 Community Health Centers in Tasikmalaya Regency. The data analysis technique used is descriptive analysis and Structural Equation Model (PLS-SEM), using SmartPLS 4.0.

Apart from that, this research determined that all members of the population, namely all 40 Community Health Centers in Tasikmalaya Regency, were to be studied using the census data collection method. A census is a method of collecting data from every possibility or every member of a group in a population (Saunders et al., 2019).

The variables used in this research are Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), Facilitating Conditions (FC), Behavioral Intention (BI), and Use Behavior (UB), which refer to the UTAUT model. There are six variables in this research with 24 indicators as follows: (1) Use Behavior (UB) consists of four indicators: I often use ePuskesmas (UB1), I use ePuskesmas at work every day (UB2), I use ePuskesmas for data management patient (UB3), I use ePuskesmas to do the reporting (UB4). These items were adopted from (Lantu et al., 2023) and (Vanderschaaf et al., 2023); (2) Behavioral Intention (BI) consists of four indicators: EPuskesmas is useful for Puskesmas (BI1), I will always use epuskesmas in completing daily tasks (BI2), I will support Puskesmas to commit to using epuskesmas for the coming years coming (BI3), I will encourage other officers to use epuskesmas (BI4). These items were adopted from (Patil et al., 2020); (3) Performance Expectancy (PE) consists of four indicators: Using ePuskesmas can help my work (PE1), EPuskesmas allows me to complete tasks more quickly (PE2), Using ePuskesmas increases my productivity at work (PE3), Using ePuskesmas can improve performance and overall work efficiency at the community health center (PE4). These items were adopted from (Patil et al., 2020) and (Patil et al., 2020); (4) Effort Expectancy (EE) consists of four indicators: Epuskesmas is easy to use (EE1), Epuskesmas is easy to learn (EE2), The appearance of epuskesmas is clear and easy to understand (EE3), I am skilled in using epuskesmas (EE4). These items were adopted from (Patil et al., 2020); (5) Social Influence (SI) consists of four indicators: Puskesmas management influences my intention to use ePuskesmas (SI1), Head of Puskesmas and Head of Administration encourage me to use ePuskesmas (SI2), Support from the Health Service is very helpful in using it. (SI3), My colleagues support the use of ePuskesmas (SI4). These items were adopted from (Baudier et al., 2023) and (Patil et al., 2020); (6) Facilitating Conditions (FC) consists of four indicators: I have the information technology resources (such as laptop and internet) needed to use ePuskesmas (FC1), I have the knowledge and skills needed to use ePuskesmas (FC2), If I difficulties in using ePuskesmas, there will be experts to help me (FC3), Guidance regarding the operation of ePuskesmas is available to me (FC4). These items were adopted from (Baudier et al., 2023), (Patil et al., 2020), and (Alkhwaldi et al., 2022).
All answers collected via online questionnaires were measured using a Likert scale consisting of Strongly Agree (SS), Agree (S), Disagree (TS), and Strongly Disagree (STS). The PLS-SEM analysis technique involves two stages of model evaluation, namely a measurement model (outer model), which aims to describe the relationship between latent variables and their indicators, and a structural model (inner model), which aims to describe the relationship between latent variables or between exogenous variables and endogenous variables.

The outer model consists of convergent validity tests, discriminant validity, and reliability tests. Convergent validity relates to the principle that the measures of a construct should be highly correlated. The convergent validity value can be seen from the average variance extracted (AVE) value for all items related to each construct. The rule of thumb is that the AVE value must be greater than 0.5 (Hamid & Anwar, 2019).

Discriminant validity is related to the principle that measures of different constructs should not be correlated (Haryono, 2016). According to Hamid & Anwar (2019), the model is said to have discriminant validity if the AVE root value for each construct is greater than the correlation value between latent variables. According to Garson (2016, p.67), the square root of AVE can be obtained using the Fornell Laccker test.

Reliability is a measure that shows the extent to which an instrument is free from error and ensures consistent measurement across various items in the instrument (Sekaran & Bougie, 2016, p. 223). There are two ways to measure reliability in smartPLS: Cronbach's alpha and composite reliability. The rule of thumb for Cronbach's alpha and composite reliability must be greater than 0.70 (Hamid & Anwar, 2019).

The inner model describes the relationship between latent or exogenous and endogenous variables. The criteria for assessing the inner model consist of the structural model test (inner model), namely the value of R square, Q square, and the estimated path coefficient or t-test (Haryono, 2016).

The R square value measures the level of variation in changes in the independent variable towards the dependent variable. The R square value has three criteria: 0.67 as substantial or strong, 0.33 as moderate, and 0.19 as weak (Haryono, 2016).

Predictive relevance (Q²) is used to see the model's predictive power (Muhson, 2022). According to Haryono (2016), A Q² value greater than 0 proves the model has strong predictive relevance, while a Q² value less than 0 proves the model lacks predictive relevance.

The path coefficient or t-test is used to evaluate the significance of the estimated parameters. The t-test is carried out by comparing the calculated t-value with the critical value. If the calculated t value is greater than the critical value, it is significant, but if the calculated t value is smaller than the critical value, it is not significant (Haryono & Wardoyo, 2013). According to Cooper & Schindler (2014), the t-statistic value must be above 1.65 for a one-tailed hypothesis with an alpha of 5%.

The use of ePuskesmas at the Tasikmalaya District Health Center has yet to be fully implemented. This research analyzes the behavioral intention and uses behavior of ePuskesmas users at the District Health Center to provide recommendations for overcoming these challenges. This research uses the UTAUT model, which combines four factors influencing the adoption of ePuskesmas.
behavioral intention: performance expectancy, effort expectancy, social influence, and facilitating conditions. Performance expectancy refers to the extent to which the use of technology will bring effectiveness to users in carrying out certain tasks (Wang et al., 2020). Effort expectancy reflects the level of system convenience felt by the user, and this is closely related to the user interface of a system (Faqih & Jaradat, 2021). Social influence refers to the extent to which individuals perceive that other important people believe they should use new technology (Patil et al., 2020). Facilitating conditions refer to the extent to which an individual believes that organizational and technical infrastructure can support the use of new technology (Alkhwaldi et al., 2022).

The hypotheses in this research are:
H1: Performance expectancy has a significant positive effect on behavioral intention
H2: Effort expectancy has a significant positive effect on behavioral intention.
H3: Social influence has a significant positive effect on behavioral intention.
H4: Facilitating conditions have a positive and significant effect on use behavior.
H5: Behavioral intention has a significant positive effect on use behavior.

RESULTS AND DISCUSSION

Characteristics Of Respondents

The survey in this research was carried out by distributing online questionnaires to 101 respondents from 40 Community Health Centers in the District. Tasikmalaya. The characteristics of the respondents were 51 people, or 50.50% male, and 50 people, or 49.50% female. Apart from that, ePuskesmas users are dominated by users with a working period of 0.08 - 5.07 years, amounting to 38.61% or 39 respondents.

The results of the descriptive analysis show that the average value of use behavior is 3.46 out of 4.0, the average value of behavioral intention is 3.41 on a 4.0 scale, the average value of performance expectancy is 3.40 on a scale of 4.0, the average value of The average effort expectancy is 3.16 on a 4.0 scale, the average social influence value is 3.24 on a 4.0 scale, and the average facilitating conditions value is 3.15 on a 4.0 scale.

Outer Model PLS-SEM

Convergent validity testing can be seen from the AVE (Average Variance Extracted) value. Based on Table 1, the AVE value of each variable is > 0.5, so it can be stated that all variables in this study are in the valid category.

Discriminant validity testing in this study was carried out using Fornell Lacker. Based on Table 2, the square root value of AVE with Fornell Lacker for each variable is greater than the correlation value between variables in the model. So, all variables in this study are valid. Reliability testing was carried out using Cronbach's alpha and composite reliability values. Based on Table 1, Cronbach's alpha and composite reliability values are more than 0.7. So, it meets the reliability criteria.

Table 1. AVE value, Cronbach's Alpha, Composite Reliability

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average Variance Extracted (AVE)</th>
<th>Cronbach's Alpha</th>
<th>Composite Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Behavior</td>
<td>0.857</td>
<td>0.944</td>
<td>0.960</td>
</tr>
<tr>
<td>Behavioral Intention</td>
<td>0.764</td>
<td>0.897</td>
<td>0.928</td>
</tr>
<tr>
<td>Performance Expectancy</td>
<td>0.846</td>
<td>0.939</td>
<td>0.956</td>
</tr>
<tr>
<td>Effort Expectancy</td>
<td>0.786</td>
<td>0.908</td>
<td>0.936</td>
</tr>
<tr>
<td>Social Influence</td>
<td>0.831</td>
<td>0.899</td>
<td>0.937</td>
</tr>
</tbody>
</table>
Facilitating Conditions 0.654 0.824 0.883

Table 2. Fornell-Lacker results

<table>
<thead>
<tr>
<th></th>
<th>BI</th>
<th>EE</th>
<th>FC</th>
<th>P.E</th>
<th>SI</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>0.768</td>
<td>0.886</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>0.808</td>
<td>0.809</td>
<td>0.827</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>0.851</td>
<td>0.702</td>
<td>0.756</td>
<td>0.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.679</td>
<td>0.617</td>
<td>0.721</td>
<td>0.675</td>
<td>0.912</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>0.838</td>
<td>0.712</td>
<td>0.736</td>
<td>0.747</td>
<td>0.704</td>
<td>0.926</td>
</tr>
</tbody>
</table>

Table 3. R Square and Q Square Values

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>R-square</th>
<th>Q² predict</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Intention</td>
<td>0.788</td>
<td>0.579</td>
</tr>
<tr>
<td>Use Behavior</td>
<td>0.713</td>
<td>0.595</td>
</tr>
</tbody>
</table>

**Inner Model PLS-SEM**

The inner model is a structural model that connects latent variables Hamid & Anwar, (2019). Based on Table 3, the R square value obtained for the Behavioral Intention variable is 0.788. This shows that the contribution of the Performance Expectancy, Effort Expectancy, and Social Influence variables to Behavioral Intention is 78.8% and is in the substantial category. The R square value for Use Behavior is 0.713, and this shows that the contribution of Behavioral Intent and Facilitating Conditions to Use Behavior is 71.3 % and is in the substantial category. The $Q^2$ value obtained by the Behavioral Intention variable is 0.579, and the $Q^2$ value for the Use Behavior variable is 0.595. This shows that the model has strong predictive relevance.

The goodness of fit (GOF) model was carried out in this study using SRMR. The Goodness of Fit (GOF) index is a single measure used to validate the combined performance of the measurement model with the structural model. The model is suitable if the SRMR value is below 0.08 (Garson, 2016).

The Gof value in this study is 0.060, which means that this study meets the goodness of fit criteria.

**Hypothesis testing**

Hypothesis testing uses path coefficients by looking at the t-statistic values obtained from SmartPLS 4.0 bootstrapping. According to Cooper & Schindler (2014), the criteria for hypothesis testing with the one-tailed t-test are:

- the t-statistic value is $> 1.65$ then H0 is rejected, and H1 is accepted.
- If the t- t-statistic value is $< 1.65$, then H0 is accepted, and H1 is rejected.

Table 4. Hypothesis Test Results
H1: Performance Expectancy has a significant positive effect on Use Behavior

The resulting t-statistic value is 6.220 > 1.65. Thus, H1 is accepted, which means that ePuskesmas has a positive impact on users. Users have felt the benefits of ePuskesmas, namely that it can help users complete tasks more quickly, increase user productivity at work, and increase overall work efficiency at the Puskesmas, thereby influencing users’ intentions to use ePuskesmas. These results are also supported by the results of discussions conducted by researchers with ePuskesmas users on November 6th, 2023, and the researchers’ exploration revealed that the features of the ePuskesmas application could help them to complete daily tasks, such as serving patients, accessing BPJS patient data, as master data for the Puskesmas, and preparing Puskesmas reports.

These results are in line with research conducted by Faqih & Jaradat (2021) and Wang et al. (2020).

H2: Effort expectancy has a significant positive effect on behavioral intention.

The t-statistic value is 3.597 > 1.65. Thus, H2 is accepted, meaning that effort expectancy significantly positively affects Behavioral Intention. Based on these results, users find it easy to operate ePuskesmas, which can increase users’ intention to use ePuskesmas. The results of the exploration and discussion carried out with ePuskesmas users on November 6th, 2023, revealed that the initial page display on ePuskesmas is simple, making it easy for users to understand and operate.

These results are in line with research conducted by Shahbaz et al. (2021), Abbad (2021), and Wang et al. (2020), which showed different results where effort expectancy had a positive and significant effect on behavioral intention. Research conducted by Faqih & Jaradat (2021) explains that effort expectancy has a positive and significant influence on behavioral intention to adopt Augmented Reality (AR) where users consider augmented reality to be easy to use which is driven by a user-friendly interface, so they will tend to adopt technology. However, these results contradict research conducted by Alkhwaldi et al. (2022), which explains that effort expectancy does not significantly affect behavioral intention to use HR information system (HRIS).

H3: Social influence has a significant positive effect on behavioral intention.

The t-statistic value obtained was 1.377 < 1.65. Thus, H3 is rejected, which means that social influence has no significant positive effect on behavioral intention.

Based on these results, users think that social influence or influence from people around the user does not influence the user’s intention to use ePuskesmas. The results of the researcher’s discussion with ePuskesmas users conducted on November 6th, 2023, revealed that the management team and the environment around the users did not encourage users’ intention to use ePuskesmas.

These results are supported by research conducted by Baudier et al. (2023), which shows that social influence does not significantly affect behavioral intention. Another research conducted by Abbad (2021) explains that social influence does not significantly affect behavioral intention; this is because the digital generation was born in a digital environment, which reduces the need for social influence to use technology. However, this contradicts research conducted by

### Table 1: Summary of t-test results

<table>
<thead>
<tr>
<th></th>
<th>Original Sample</th>
<th>Sample Mean</th>
<th>Standard Deviation</th>
<th>T Statistics</th>
<th>P Values</th>
<th>Note.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE → BI</td>
<td>0.561</td>
<td>0.566</td>
<td>0.090</td>
<td>6.220</td>
<td>0.000</td>
<td>Accepted</td>
</tr>
<tr>
<td>EE → BI</td>
<td>0.305</td>
<td>0.301</td>
<td>0.085</td>
<td>3.597</td>
<td>0.000</td>
<td>Accepted</td>
</tr>
<tr>
<td>SI → BI</td>
<td>0.112</td>
<td>0.112</td>
<td>0.081</td>
<td>1.377</td>
<td>0.169</td>
<td>Rejected</td>
</tr>
<tr>
<td>BI → UB</td>
<td>0.701</td>
<td>0.690</td>
<td>0.086</td>
<td>8.174</td>
<td>0.000</td>
<td>Accepted</td>
</tr>
<tr>
<td>FC → UB</td>
<td>0.169</td>
<td>0.178</td>
<td>0.081</td>
<td>2.090</td>
<td>0.037</td>
<td>Accepted</td>
</tr>
</tbody>
</table>
Jadil et al. (2021), Shahbaz et al. (2021), and Kim et al. (2022), which shows the results of social influence have a positive and significant effect on behavioral intention.

**H4: Facilitating conditions have a positive and significant effect on use behavior.**

The t-statistic value obtained is 2.090 > 1.65. Thus, facilitating conditions have a positive and significant effect on behavioral intention. Users feel that the conditions that facilitate both infrastructure and technical support have supported the use of ePuskesmas, thereby increasing the use of ePuskesmas. Based on the results of discussions with ePuskesmas users conducted on November 6th, 2023, users revealed that experts from the developer had really helped users in operating ePuskesmas.

The results of this research align with research conducted by Abbad (2021), which shows that facilitating conditions have a significant positive effect on use behavior. Research conducted by Al-mammary (2022) shows that facilitating conditions significantly positively affect LMS use behavior in universities in Saudi Arabia. However, the results of this research conflict with research conducted by Rachmawati et al. (2020), which shows that facilitating conditions do not significantly affect use behavior using m-banking.

**H5: Behavioral intention has a positive and significant effect on use behavior.**

The t-statistic value obtained is 8.174 < 1.65. Thus, behavioral intention has a positive and significant effect on behavioral intention. Users have strong intentions and tend to be involved in using ePuskesmas, thereby increasing the actual use of ePuskesmas. The results of discussions with ePuskesmas users revealed that users felt that ePuskesmas was useful for Puskesmas so that it could enable users to increase the actual use of ePuskesmas.

The results of this research are supported by Shahbaz et al. (2021), who explain that behavioral intention has a significant positive effect on the use behavior of the big data analytics-environmental air pollution (BDA-EAP) management system. Research conducted by Patil et al. (2020) states that behavioral intention has a significant positive effect on the use behavior of consumers in India regarding mobile payments. With consumers’ high intention to use mobile payments, consumers will likely tend to use this technology in their daily lives. Other researchers who support the results of this research are Al-mammary (2022), Abbad (2021), Rachmawati et al. (2020), and Lantu et al. (2023), who explain that behavioral intention has a significant effect on use behavior.

**Managerial Implications**

Based on the results obtained from this research, performance and effort expectancy significantly positively affect ePuskesmas’s behavioral intention at the Tasikmalaya Community Health Center. Behavioral intention and facilitating conditions influence the use behavior of ePuskesmas. The practical implication is that ePuskesmas can provide a better way for users to complete their work more quickly. Apart from that, more attention must be paid to the interface/appearance design of ePuskesmas to improve users’ skills in using ePuskesmas, as well as providing and providing technical support such as a complete guide regarding ePuskesmas for users.

**CONCLUSION**

1. Based on the R² value the dependent variable, behavioral intention, has a value of 0.788 or 78.8 %. This shows that the contribution of the variables performance expectancy, effort expectancy, and social influence to behavioral intention is 78.8 %, and the remaining 21.2 % is due to other factors that cannot be explained in this research. The R² value for use behavior is 0.713 or 71.3 %, which shows that the influence of behavioral intention and facilitating conditions on use behavior is 0.713 or 71.3 %.
2. Based on the results of the hypothesis tests that have been carried out, the conclusions obtained are:
   1. Performance expectancy has a significant positive effect on behavioral intention.
   2. Effort expectancy has a significant positive effect on behavioral intention.
   3. Social influence does not have a significant positive effect on behavioral intention.
   4. Facilitating conditions have a significant positive effect on use behavior.
   5. The behavioral intention has a significant positive effect on use behavior.

DAFTAR PUSTAKA


