

Blantika: Multidisciplinary Jornal

Volume 3 Number 1, November, 2024 p- ISSN 2987-758X e-ISSN 2985-4199

SIMULASI SISTEM PELAYANAN PEMESANAN DI XYZ JIMBARAN MENGGUNAKAN APLIKASI PROMODEL

Wayan Ananta Widhiatmika

Program Studi Teknik Industri Universitas Udayana anantawdhtm@gmail.com

ABSTRAK

Pertumbuhan industri yang pesat menyebabkan persaingan yang semakin ketat di sektor bisnis, terutama dalam industri makanan cepat saji. Loyalitas konsumen menjadi aspek penting yang harus diperhatikan oleh pemilik restoran untuk mempertahankan pangsa pasar. Penelitian ini bertujuan untuk menganalisis sistem pelayanan pemesanan di restoran Xyz Jimbaran dan menawarkan solusi untuk mengatasi masalah antrian yang sering terjadi, sehingga meningkatkan kepuasan konsumen. Metode penelitian menggunakan pendekatan yang digunakan adalah kuantitatif dengan teknik analisis data deskriptif. Data dikumpulkan melalui observasi langsung selama jam sibuk dan dianalisis menggunakan aplikasi ProModel untuk mensimulasikan proses pemesanan. Hasil simulasi menunjukkan bahwa dengan penambahan kapasitas dan penataan ulang proses pemesanan, waktu tunggu pelanggan dapat dikurangi secara signifikan. Rata-rata waktu yang dihabiskan pelanggan di dalam sistem mendekati kondisi riil, dengan beberapa parameter yang menunjukkan hasil yang optimal. Penelitian ini menyimpulkan bahwa penerapan simulasi dalam analisis sistem pelayanan dapat memberikan solusi yang efektif untuk meningkatkan efisiensi dan kepuasan pelanggan di restoran Xyz Jimbaran. Penambahan kapasitas dan perbaikan proses pelayanan sangat dianjurkan untuk mengurangi antrian. Implikasi penelitian ini menunjukan bahwa simulasi dalam sistem pelayanan di restoran Xyz Jimbaran meningkatkan efisiensi operasional dan memberikan dasar untuk pengambilan keputusan strategis. Dengan mengatasi bottleneck dalam pemesanan, restoran dapat merancang manajemen antrian yang lebih baik, meningkatkan pengalaman pelanggan. Peningkatan kualitas pelayanan berpotensi meningkatkan loyalitas pelanggan, berdampak positif pada penjualan dan pangsa pasar. Penelitian ini juga mendorong adopsi teknologi simulasi di industri makanan cepat saji, membuka peluang untuk inovasi lebih lanjut dalam pelayanan pelanggan.

Kata Kunci: xyz; simulasi; promodel; model

ABSTRACT

Rapid industrial growth has led to increasingly tight competition in the business sector, especially in the fast food industry. Consumer loyalty is an important aspect that restaurant owners must pay attention to in order to maintain market share. This study

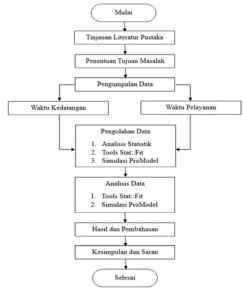
aims to analyze the ordering service system at the Xyz Jimbaran restaurant and offer solutions to overcome the frequent queue problems, thereby increasing customer satisfaction. The research method uses a quantitative approach with descriptive data analysis techniques. Data were collected through direct observation during peak hours and analyzed using the ProModel application to simulate the ordering process. The simulation results show that with the addition of capacity and rearrangement of the ordering process, customer waiting time can be significantly reduced. The average time spent by customers in the system is close to real conditions, with several parameters showing optimal results. This study concludes that the application of simulation in service system analysis can provide an effective solution to improve efficiency and customer satisfaction at the Xyz Jimbaran restaurant. Increasing capacity and improving the service process is highly recommended to reduce queues. The implications of this study indicate that simulation in the service system at the Xyz Jimbaran restaurant improves operational efficiency and provides a basis for strategic decision making. By overcoming bottlenecks in ordering, restaurants can design better queue management, improving customer experience. Improving service quality has the potential to increase customer loyalty, positively impacting sales and market share. This study also encourages the adoption of simulation technology in the fast food industry, opening up opportunities for further innovation in customer service.

Keywords: xyz's; simulation; promoel; model

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

PENDAHULUAN

Di era digital ini, perkembangan teknologi menjadi pendorong utama bagi kemajuan di berbagai sektor, salah satunya sektor industri dan bisnis. Dalam suatu perusahaan atau organisasi, teknologi memiliki banyak fungsi seperti mengotomatisasi proses, mengelola sistem, dan mendorong kemajuan teknologi lain seperti simulasi. Suatu mekanisme untuk menirukan sistem nyata yang ada dengan sifat yang lebih mudah untuk diamati daripada sistem aslinya merupakan definisi dari simulasi. Secara umum, proses peniruan suatu sistem dilakukan dengan memperhitungkan karakteristik kunci dari kegiatan system. Simulasi sering digunakan sebagai alat untuk meningkatkan kualitas layanan, mengontrol biaya dan waktu. Metode simulasi telah banyak digunakan untuk menyelesaikan berbagai macam permasalahan proses bisnis maupun perindustrian.


Penelitian dengan menggunakan pendekatan simulasi Monte Carlo maupun Semi-Markov, dimana simulasi ini menghitung nilai-nilai secara acak dari variabel dengan berulang-ulang untuk mendapatkan distribusi probabilitas dari model yang akan dilakukan simulasi. Penelitian terdahulu yang pernah dilakukan oleh Purnomo dkk Model Sistem Antrian pada Pelayanan Restoran Cepat Saji KFC Gajah Mada di Kabupaten Jember dengan menggunakan software ARENA. Tujuan dari penelitian ini adalah untuk memahami karakteristik sistem antrian yang digunakan di KFC Jember. Hasil penelitian menunjukkan bahwa dengan melakukan simulasi, disarankan untuk menambah satu fasilitas kasir menjadi tiga. Penelitian yang dilakukan oleh Kurniawan dan Andesta yang membahas mengenai Analisis Simulasi Sistem Antrian Pemesanan Makanan pada Warung Apung Rahmawati Gresik dengan menggunakan software ARENA. Tujuan dari penelitian tersebut yaitu untuk mengetahui tingkat kesibukan yang

terdapat pada pelayanan. Adapun hasil penelitian menunjukkan bahwa simulasi yang dilakukan memberikan usulan dengan menambahkan 1 server atau kasir.

Tujuan dari penelitian ini yaitu untuk memberikan gambaran mengenai bagaimana suatu sistem pelayanan berjalan di Xyz Jimbaran yang selanjutnya dapat mengidentifikasi dan mengeliminasi permasalahan yang ada dengan output berupa usulan yang telah disimulasikan dengan menggunakan Software ProModel. ProModel merupakan aplikasi simulasi yang biasanya digunakan untuk merencanakan, mendesain, dan meningkatkan sebuah manufaktur, logistik yang ada maupun baru. ProModel memfokuskan pada persoalan seperti utilisasi sumber, kapasitas produksi, produktivitas dan inventori.

METODE PENELITIAN

Pendekatan penelitian yang digunakan dalam penelitian ini adalah pendekatan kuantitatif dengan teknik analisis data deskriptif. Maksud dan hasil yang diharapkan dari penelitian ini yaitu mengidentifikasi dan mengeliminasi permasalahan yang ada dengan output berupa rekomendasi usulan yang telah disimulasikan. Berikut diagram alir dari penelitian ini.

Gambar 1. Diagram Alir Penelitian

Pengumpulan Data

Proses pengumpulan data dilakukan dengan cara pengamatan langsung. Pengamatan dilakukan pada Rabu, 29 Mei 2024. Waktu pengamatan dilakukan selama 3 jam berdasarkan *peak hour*, dimulai Pukul 18.00-21.00 WITA. Lokasi pengamatan dilakukan di *Xyz* Jimbaran yang berada di Jl. Uluwatu II No.01, Jimbaran, Kabupaten Badung, Bali. Total data yang didapatkan sebanyak 36 data secara keseluruhan.

Pendefinisian Distribusi

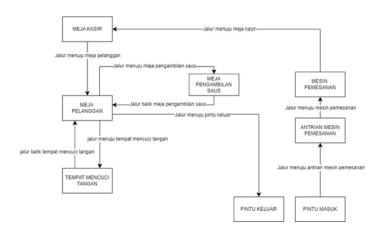
Distribusi waktu dicari menggunakan tools Stat::Fit pada aplikasi ProModel dengan hasil sebagai berikut.

Tabel 1. Distribusi Data Waktu

No Nama Proses Lokasi Distribusi Waktu

Kedatangan Pelanggan	Pintu Masuk	wait eksponensial (321,90) sec
Antrian Mesin Pemesanan	Antrian Mesin Pemesanan	wait eksponensial (73.2,72.2) sec
Memesan Menu Makanan	Mesin Pemesanan	wait lognormal (153,77.7) sec
Membayar Pesanan	Meja Kasir	wait uniform (116,44.5) sec
Menunggu Pesanan	Meja Pelanggan	wait uniform (534,202) sec
Pengambilan Saus	Meja Pengambilan Saus	wait lognormal (8.6,3.18) sec
Menaruh makanan	Meja Pelanggan	wait uniform (2.5,1) sec
Mencuci Tangan (1)	Tempat Mencuci Tangan	wait lognormal (23.2,8.01) sec
Menyantap Makanan	Meja Pelanggan	wait lognormal (3601,5.1035.7) sec
Mencuci Tangan (2)	Tempat Mencuci Tangan	wait lognormal (32.3,14.2) sec
Bersiap-siap pulang	Meja Pelanggan	wait lognormal (31.7,17.8) sec
Kepulangan Pelanggan	Pintu Keluar	wait uniform (4,1.15) sec
	Antrian Mesin Pemesanan Memesan Menu Makanan Membayar Pesanan Menunggu Pesanan Pengambilan Saus Menaruh makanan Mencuci Tangan (1) Menyantap Makanan Mencuci Tangan (2) Bersiap-siap pulang	Antrian Mesin Pemesanan Memesan Menu Makanan Mesin Pemesanan Mesin Pemesanan Meja Kasir Menunggu Pesanan Meja Pelanggan Pengambilan Saus Meja Pengambilan Saus Menaruh makanan Meja Pelanggan Mencuci Tangan (1) Tempat Mencuci Tangan Menyantap Makanan Meja Pelanggan Mencuci Tangan (2) Tempat Mencuci Tangan Mencuci Tangan Mencuci Tangan Mencuci Tangan Mencuci Tangan Mencuci Tangan

Pengukuran Data Move Times


Pada simulasi ini juga dilakukan pengamatan terkait waktu berpindah suatu entitas dari satu lokasi ke lokasi lainnya (*move times*). *Move times* pada sistem ini adalah sebagai berikut:

Tabel 2. Data Move Times

No	Lokasi 1	Lokasi 2	Move Times (Detik)	
1	Pintu Masuk	Antrian Mesin Pemesanan	move for 2 sec	
2	Antrian Mesin Pemesanan	Mesin Pemesanan	move for 2 sec	
3	Mesin Pemesanan	Meja Kasir	move for 4 sec	
4	Meja Kasir	Meja Pelanggan	move for 4 sec	
5	Meja Pelanggan	Meja Pengambilan Saus	move for 3 sec	
6	Meja Pengambilan Saus	Meja Pelanggan	move for 3 sec	
7	Meja Pelanggan	Tempat Mencuci Tangan	move for 5 sec	
8	Tempat Mencuci Tangan	Meja Pelanggan	move for 5 sec	
9	Meja Pelanggan	Tempat Mencuci Tangan	move for 6 sec	
10	Tempat Mencuci Tangan	Meja Pelanggan	move for 6 sec	
11	Meja Pelanggan	Pintu Keluar	move for 15 sec	

HASIL DAN PEMBAHASAN

Model Konseptual

Gambar 2. Model Konseptual

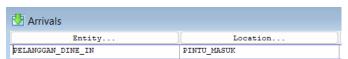
Pelanggan memasuki *Xyz* Jimbaran melewati pintu masuk. Setelah memasuki area dalam restaurant, langkah pertama yang dilakukan yaitu memesan makanan maupun minuman melalui monitor pemesanan yang telah tersedia, monitor pemesanan ini tersedia 5 layar yang bisa digunakan oleh para pelanggan untuk mengurangi kemungkinan antrian yang panjang. Selanjutnya pelanggan yang telah memilih menu makanan hingga mendapatkan struk belanja, mereka melanjutkan menuju meja kasir untuk membayar makanan. Pelanggan dapat menuju area tempat makan di tempat *(dine in)* dengan membawa nomor meja yang diberi oleh kasir dan menunggu makanan tiba yang akan dibawa oleh pelayan nantinya. Pelanggan yang sudah mendapatkan makanannya, akan mengambil saus sambal di tempat pengambilan saus sambal dan kembali menuju meja makan untuk menaruh sambal yang telah diambil. Pelanggan pun menuju tempat mencuci tangan untuk mencuci tangan sebelum makan dan kembali menuju meja makan untuk menyantap makanan yang telah dipesan. Pelanggan pun keluar dari *Xyz* Jimbaran melalui pintu keluar.

Pendefinisian Komponen Sistem

Entity

Entitas merupakan suatu objek yang dapat bergerak dan akan melewati suatu proses pada sistem yang ada. Entitas pada simulasi ini yaitu pelanggan makan ditempat (dine in). Entitas ini merupakan seseorang yang datang untuk memenuhi kebutuhan yang diinginkan dengan melalui suatu proses dari awal hingga akhir. Pelanggan ini menikmati hidangannya langsung di tempat makan.

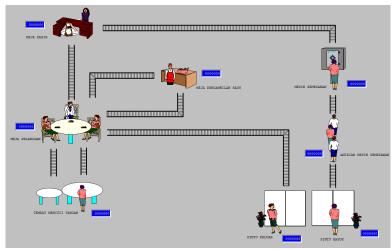
Gambar 3. Entity dalam sitem simulasi


Location

Location merupakan tempat dalam suatu sistem yang akan mengalami pemrosesan, menunggu, atau pengambilan keputusan dalam suatu sistem. Aturan antrian yang digunakan pada Xyz Jimbaran yaitu aturan Oldest dan FIFO. Aturan OLDEST memprioritaskan pelanggan yang sudah terlama menunggu di antrian sedangkan aturan FIFO memprioritaskan pelanggan yang pertama kali datang ke antrian. Aturan OLDEST yang kerap disebut First-In, First-Out atau FIFO. Konsep ini sangat sederhana barang atau data yang pertama kali masuk ke dalam suatu sistem akan menjadi yang pertama kali keluar dari sistem tersebut. Dalam kasus penelitian kali ini, location dalam sistem beserta informasinya adalah sebagai berikut.

- a. Pintu masuk berkapasitas 5 dengan rules oldest, FIFO
- b. Jalur menuju antrian mesin pemesanan berkapasitas 15 dengan rules oldest, FIFO
- c. Antrian mesin pemesanan berkapasitas 10 dengan rules oldest, FIFO
- d. Jalur menuju mesin pemesanan berkapasitas 15 dengan rules oldest, FIFO
- e. Mesin pemesanan berkapasitas 10 dengan rules oldest, FIFO
- f. Jalur menuju meja kasir berkapasitas 15 dengan rules oldest, FIFO
- g. Meja kasir berkapasitas 10 dengan rules oldest, FIFO
- h. Jalur menuju meja pelanggan berkapasitas 15 dengan rules oldest, FIFO
- i. Meja pelanggan berkapasitas 50 dengan rules oldest, FIFO
- j. Jalur menuju tempat pengambilan saus berkapasitas 15 dengan rules oldest, FIFO
- k. Meja pengambilan saus berkapasitas 10 dengan rules oldest, FIFO
- 1. Jalur balik meja pengamblan saus berkapasitas 15 dengan rules oldest, FIFO
- m. Jalur menuju tempat mencuci tangan berkapasitas 15 dengan rules oldest, FIFO
- n. Tempat mencuci tangan berkapasitas 15 dengan rules oldest, FIFO
- o. Jalur balik tempat mencuci tangan berkapasitas 15 dengan rules oldest, FIFO
- p. Jalur menuju pintu keluar berkapasitas 15 dengan rules oldest, FIFO
- q. Pintu keluar berkapasitas 5 dengan rules oldest, FIFO

Arrivals


Arrivals adalah proses masuknya entitas ke dalam simulasi. Dalam model simulasi ini terdapat 1 entitas yaitu Pelanggan *Dine In* yang berbelanja di *Xyz* Jimbaran dengan lokasi kedatangan yaitu pintu masuk.

Gambar 4. Arrivals dalam sistem simulasi

Pembuatan Simulasi *ProModel Layout* Model

Pada gambar 6 menunjukan *layout* proses kerja pada sistem *Xyz* Jimbaran, dengan menggunakan aplikasi *ProModel 2016 Student Version*.

Gambar 5. Layout di dalam sistem simulasi

Verifikasi Model

Dari gambar 6, dapat dilihat bahwa dalam 1 hari dengan batasan waktu 3 jam, secara rata-rata terdapat 45 pelanggan yang telah keluar dari sistem. Secara rata-rata, pelanggan berada di sistem 5.240,91 detik. Kondisi ini sudah mewakilkan keadaan nyata pada lokasi *Xyz* Jimbaran yang sangat mendekati Average Time In System Riil yaitu 5.035,9 detik.

Avg	PELANGGAN DINE IN	45,10	5.240,91	5.227,42
Replication	Name	Total Exits	Average Time In System (Sec)	Average Time In Operation (Sec)

Gambar 6. Verifikasi model di dalam sistem simulasi

Validasi Model

Tabel data entity summary pelanggan dari simulasi replikasi 10 kali

Tabel 3. Data Entity Summary

Replikasi	Output Simulasi
1	42
2	45
3	46
4	47
5	34
6	50
7	46
8	40
9	46
10	55
Rata-rata	45,1

Standar Deviasi	5,6
	$\beta = \left(\frac{t^{\frac{\alpha}{2}.S}}{\sqrt{n}}\right)$
	$= \left(\frac{2,042.5,6}{\sqrt{10}}\right)^{(1)}$ = 3.6

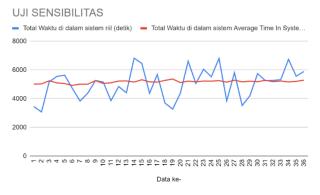
Dimana adalah nilai *half width* atau *Absolute Error*, n adalah jumlah replikasi, β adalah level signifikansi, s adalah standar deviasi dan $t\frac{\alpha}{2}$ adalah nilai pada tabel t. Sehingga banyak replikasi:

(2)
$$n' = \left(\frac{2\frac{\alpha}{2}.s}{\beta}\right)^{2}$$
$$= \left(\frac{1,96.5,6}{3,6}\right)^{2}$$
$$= 9.2$$

Jadi banyaknya melakukan replikasi ketika menjalankan simulasi minimal 10 kali.

	Tabel 4. Data Average Time in System					
F	Replikasi	Average Time In System Simulation (detik)				
	1	5013				
	2	5028				
	_					

2	5028	
3	5246	
4	5099	
5	5051	
6	4926	
7	5012	
8	5009	
9	5258	
10	5062	
Rata-rata	5070	
Standar Deviasi	105,6295413	


Sedangkan data riil waktu total pelanggan berada di dalam sistem ketika memesan di *Xyz* sebagai berikut.

Tabel 5. Data total waktu dalam sistem riil

Data ke-	Total Waktu di dalam sistem riil (detik)	Data ke-	Total Waktu di dalam sistem riil (detik)
1	3450	19	3273
2	3074	20	4387
3	5177	21	6610
4	5554	22	5064
5	5635	23	6052
6	4713	24	5524
7	3832	25	6808
8	4390	26	3853
9	5267	27	5811
10	5160	28	3521
11	3860	29	4204
12	4845	30	5746
13	4409	31	5253
14	6822	32	5272
15	6455	33	5324
16	4374	34	6741
17	5683	35	5565
18	3691	36	5892
rata-rata	(detik)	5035,9	
standar d	leviasi		1052,190536

Syarat untuk dapat melakukan pengujian statistik ini adalah data-data replikasi berdistribusi normal. Syarat independensi dipenuhi dari karakteristik replikasi model di mana tiap replikasi menggunakan random stream yang berbeda sehingga antara data 1 dengan yang lainnya saling independen. Kemudian untuk syarat berdistribusi normal, maka perlu dilakukan pengujian kenormalan. Uji normalitas dilakukan dengan menggunakan metode Liliefors.

Uji Sensibilitas

Gambar 7. Diagram perbandingan antara rata-rata simulasi dengan rata-rata riil

Diagram diatas merupakan perbandingan antara average time in system riil dengan average time in system simulation dari 36 data riil dan 36 data simulasi hasil dari rekapitulasi. rata-rata antara 2 average time in system tersebut yaitu 5175,6 detik dalam simulasi dengan 5035,9 dalam riil. Berdasarkan grafik diatas, terdapat 5 data yang dimana Average Time in System antar data riil dan simulasi memiliki hasil yang mendekati, seperti data riil dan replikasi simulasi ke 3, 9, 10 dan 31. Lima data tersebut akan diuji Mean Squared Error (MSE).

Tabel 6. Data Mean Squared Error

Data ke-	W	aktu	
Data Ke-	Riil Simulasi		Squared Eror
3	5177	5246	-69
9	5267	5258	9
10	5160	5162	-2
31	5253	5280	-27
MSE (detik)			1393,75
MSE (Menit)			23,2

Hasil perhitungan diatas didapatkan bawa *Mean Squared Eror* yaitu 23 menit, Hasil MSE tersebut didapatkan dari pengurangan antara data riil dan simulasi yan gtelah dikuadratkan.

Uji Normalitas

H0: Data berdistribusi normal

H1: Data tidak berdistribusi normal

Tabel 7. Data uji normalitas

No	X	Z	F(x)	S(x)	abs(F(x)-S(x))
1	4926	-1,37	0,086	0,1	0,01
2	5009	-0,58	0,281	0,2	0,08

3	5012	-0,55	0,290	0,3	0,01
4	5013	-0,54	0,293	0,4	0,11
5	5028	-0,40	0,344	0,5	0,16
6	5051	-0,18	0,427	0,6	0,17
7	5062	-0,08	0,468	0,7	0,23
8	5099	0,27	0,607	0,8	0,19
9	5246	1,66	0,952	0,9	0,05
10	5258	1,78	0,962	1	0,04
Rata-rata					5070,4
Star	ndar Devi	asi	105,6		

Dari tabel di atas didapatkan bahwa L hitung yaitu 0,23. Berdasarkan tabel liliefors, untuk $\alpha = 0,05$, n = 10, L = 0,285. Karena Lhitung < L tabel, maka H0 tidak dapat ditolak. Artinya data replikasi berdistribusi normal. Pengujian validitas dapat dilanjutkan.

T-Student

H0: $\mu = \overline{x}$ (artinya rata-rata waktu total riil pelanggan berada di dalam sistem tidak berbeda signifikan dengan rata-rata waktu total pelanggan berada dalam sistem simulasi). H1: $\mu \neq \overline{x}$ (artinya rata-rata waktu total riil pelanggan berada di dalam sistem berbeda signifikan dengan rata-rata waktu total pelanggan berada dalam sistem simulasi).

(3)
$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$
$$= \frac{5070,4 - 5035,9}{\frac{105,6}{\sqrt{10}}}$$
$$= 1.03$$

Dengan nilai $\alpha = 0.05$ two-tail dan degrees of freedom = n - 1 = 9, maka $t\alpha$ 2; dof = t0.025; 7 = 2,262, maka Subscript < t0.025; 7. Disimpulkan bahwa H0 tidak ditolak, artinya rata-rata waktu total riil pelanggan berada di dalam sistem tidak berbeda signifikan dengan rata-rata waktu total pelanggan berada dalam sistem simulasi.

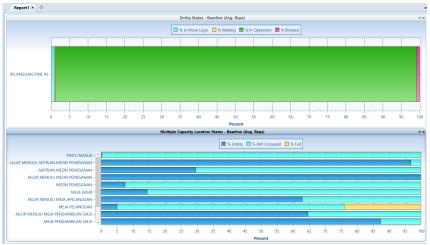
Analisis Output Simulasi

Setelah dilakukan berbagai tahapan simulasi pada ProModel 2016, akan dihasilkan output simulasi. Simulasi yang dilakukan yaitu simulasi dari perilaku sistem dengan rentang waktu tertentu. Simulasi dilakukan selama 3 jam yang disesuaikan dengan *peak hour* dan waktu penelitian yang disarankan. Sistem pada *Xyz* Jimbaran mulai dari 19.00-21.00 WITA. Berikut adalah output yang didapatkan setelah melakukan simulasi pada ProModel 2016.

Gambar 8. Analisis Output simulasi

Berdasarkan gambar diatas bahwa terjadinya *%waiting* sebesar 1,73 dan *blocked* sebesar 1,48 pada *entities states*. Terjadinya *full* pada *Capacity Location states* di Pintu masuk, mesin pemesanan, meja kasir, dan meja pelanggan dikarenakan banyaknya pelanggan yang yang berada pada antrian mesin pemesanan yang membuat kondisi pada pintu masuk penuh. Meja kasir hanya diisi oleh 1 orang kasir saja juga membuat lokasi ini mengalami *full*. Membludaknya pelanggan pada *peak hour* juga mengakibatkan meja pelanggan selalu penuh. Kapasitas penuh pada lokasi awal ini dapat membuat terganggunya proses kerja di lokasi lainnnya dan juga dapat mengurangi kenyamanan pelanggan yang sedang menikmati makanan yang duduk berdekatan dengan lokasi penuh tersebut.

Usulan Perbaikan


Berdasarkan hasil output, perlu diusulkan perbaikan yang sesuai dengan simulasi sistem di *Xyz* Jimbaran. Berikut beberapa perbaikan yang dapat diusulkan.

Locations							
Icon	Name	Cap.	Units	DTs	Stats	Ru	
	PINTU_MASUK	15	1	None	Time Series	Oldest, FIFO	
111111111111	JALUR_MENUJU_ANTRIAN_MESIN_PEMESANAN	15	1	None	Time Series	Oldest, FIFO	
	ANTRIAN_MESIN_PEMESANAN	10	1	None	Time Series	Oldest, FIFO	
11111111111	JALUR_MENUJU_MESIN_PEMESANAN	15	1	None	Time Series	Oldest, FIFO	
	MESIN_PEMESANAN	20	1	None	Time Series	Oldest, FIFO	
	JALUR_MENUJU_MEJA_KASIR	15	1	None	Time Series	Oldest, FIFO	
j	MEJA_KASIR	20	1	None	Time Series	Oldest, FIFO	
	JALUR_MENUJU_MEJA_APELANGGAN	15	1	None	Time Series	Oldest, FIFO	
A	MEJA_PELANGGAN	70	1	None	Time Series	Oldest, FIFO	
11111111111	JALUR_MENUJU_MEJA_PENGAMBILAN_SAUS	15	1	None	Time Series	Oldest, FIFO	
	MEJA_PENGAMBILAN_SAUS	10	1	None	Time Series	Oldest, FIFO	
11111111111	JALUR_BALIK_MEJA_PENGAMBILAN_SAUSS	15	1	None	Time Series	Oldest, FIFO	
11111111111	JALUR_MENUJU_TEMPAT_MENCUCI_TANGAN	15	1	None	Time Series	Oldest, FIFO	
	TEMPAT_MENCUCI_TANGAN	15	1	None	Time Series	Oldest, FIFO	
11111111111	JALUR_BALIK_TEMPAT_MENCUCI_TANGAN	15	1	None	Time Series	Oldest, FIFO	
	JALUR_MENUJU_PINTU_KELUAR	15	1	None	Time Series	Oldest, FIFO	
	PINTU_KELUAR	15	1	None	Time Series	Oldest, FIFO	

Gambar 9. Usulan Perbaikan di dalam sistem smulasi

Usulan perbaikan yang diusulkan diatas berdasarkan asumsi dari pengamat. Penambahan kapasitas beberapa lokasi seperti pintu masuk menjadi 15, mesin pemesanan menjadi 20, meja kasir menjadi 20, dan meja pelanggan menjadi 70. Selain penambahan kapasitas, memperbaharui sistem mesin pemesanan terutama dalam pilihan bahasa dapat sangat membantu mempercepat

beberapa pelanggan luar negeri ketika memesan makanan dan dapat membuat mengurangi munculnya antrian.

Gambar 10. Output dari usulan perbaikan di dalam sistem simulasi

Berdasarkan hasil *output* pada gambar diatas, block pada entitas dalam sistem ini telah berkurang menjadi 0,7. Lokasi yang pada awalnya *full* berkurang hanya menjadi 1 lokasi saja. *Full* pada meja pelanggan ini dapat dikurangi jika penambahan kapasitas meja pelanggan dilakukan, tetapi karena lokasi yang sudah tidak dapat diperluas kembali, maka kejadian ini dapat diminimalisir dengan mengoptimalisasikan kinenrja pada lokasi lain.

KESIMPULAN

Setelah melakukan verifikasi dan validasi pada hasil simulasi, diperoleh bahwa model terverifikasi dan tervalidasi keakuratan dalam sistem nyata untuk aktivitas pelanggan dine in Xyz Jimbaran. Berdasarkan analisis output simulasi terdapat blocked pada entitas sebesar 1.39% dan meja kasir sebesar 73.36%. Maka dari itu dilakukan usulan perbaikan dengan menambah kapasitas di beberapa lokasi seperti pintu masuk, mesin pemesanan, meja kasir, dan meja pelanggan. Setelah disimulasikan, sistem berjalan dengan sangat baik dibandingkan dengan sebelum usulan perbaikan, yang dimana menjadikan blocked pada entitas sebesar 0,7. Lokasi yang pada awalnya full berkurang hanya menjadi 1 lokasi saja. Full pada meja pelanggan ini dapat dikurangi jika penambahan kapasitas meja pelanggan dilakukan, tetapi karena lokasi yang sudah tidak dapat diperluas kembali, maka kejadian ini dapat diminimalisir dengan mengoptimalisasikan kinenrja pada lokasi lain.

DAFTAR PUSTAKA

- D. Z. Zubir, F. Andini, M. Ridho, and Y. Filki, "Simulasi Sistem Pelayanan Rawat Jalan Pasien menggunakan Simulasi Kejadian Diskrit (Des)," Jurnal Informatika Ekonomi Bisnis, pp. 160–165, Sep. 2022, doi: 10.37034/infeb.v4i4.165.
- N. Rahmawati and D. S. Donoriyanto, "Simulasi Sistem Antrian Pelayanan Penumpang Busway," Waluyo Jatmiko Proceeding, pp. 441–450, Nov. 2023, doi: 10.33005/wj.v16i1.66.

- B. Nindy Virgiani and W. Nur Aeni, "Pengaruh Pelatihan Siaga Bencana dengan Metode Simulasi terhadap Kesiapsiagaan Menghadapi Bencana: Literature Review."
- D. Mourtzis, "Simulation in the design and operation of manufacturing systems: state of the art and new trends," Int J Prod Res, vol. 58, no. 7, pp. 1927–1949, Apr. 2020, doi: 10.1080/00207543.2019.1636321.
- A. Sidik, "Usulan Minimalisi Antrian Proses Pemuatan Pupuk dengan Simulasi di PT. Petrosida Gresik," Doctoral dissertation, Universitas Muhammadiyah Gresik, 2019.
- F. Y. Panjaitan, W. Winarno, and F. N. Azizah, "Usulan Peningkatan Kualitas Imprabox Menggunakan Pendekatan Lean Six Sigma dengan Simulasi Monte Carlo (Studi Kasus: Perusahaan Packaging)," Go-Integratif: Jurnal Teknik Sistem dan Industri, vol. 3, no. 02, pp. 136–150, Nov. 2022, doi: 10.35261/gijtsi.v3i02.7565.
- Bambang Herry Purnomo et al., "Model Sistem Antrian pada Pelayanan Restoran Cepat Saji (Studi Kasus di KFC Gajah Mada Kabupaten Jember) Model of Queuing System at Fast Food Restaurant Service (Case Study in KFC Gajah Mada Jember Regency)," 2021.
- K. Kurniawan and D. Andesta, "Analisis Simulasi Sistem Antrian Pemesanan Makanan Pada Warung Apung Rahmawati Gresik," JUSTI (Jurnal Sistem dan Teknik Industri, vol. 3, no. 3, pp. 368–376, 2023.
- C. Checa Putra Hardiyanto, S. Rennard Tirtawijaya, C. Kenny Yandra, and A. Maxwell, "Pemodelan dan Simulasi Sistem Antrian Pelayanan Server Terhadap Pelanggan Percetakan XYZ Menggunakan ARENA," Seminar Nasional Teknik dan Manajemen Industri dan Call for Paper, 2021.
- R. Cornellia, "Analisis Antrian pada Loket Pembuatan Elektronik KTP dengan Menggunakan Simulasi ProModel," Jurnal String, 2018.